Минимальный уровень значимости. P-значение. Примеры про p-value

При обосновании статистического вывода следует решить вопрос, где же проходит линия между принятием и отвержением нулевой гипотезы? В силу наличия в эксперименте случайных влияний эта граница не может быть проведена абсолютно точно. Она базируется на понятии уровня значимости. Уровнем значимости называется вероятность ошибочного отклонения нулевой гипотезы. Или, иными словами, уровень значимости - это вероятность ошибки первого рода при принятии решения. Для обозначения этой вероятности, как правило, употребляют либо греческую букву α, либо латинскую букву р. В дальнейшем мы будем употреблять букву р.

Исторически сложилось так, что в прикладных науках, использующих статистику, и в частности в психологии, считается, что низшим уровнем статистической значимости является уровень р = 0,05; достаточным - уровень р = 0,01 и высшим уровень р = 0,001. Поэтому в статистических таблицах, которые приводятся в приложении к учебникам по статистике, обычно даются таблич­ные значения для уровней р = 0,05, р = 0,01 и р = 0,001. Иногда даются табличные значения для уровней р - 0,025 и р = 0,005.

Величины 0,05, 0,01 и 0,001 - это так называемые стандартные уровни статистической значимости. При статистическом анализе экспериментальных данных психолог в зависимости от задач и гипотез исследования должен выбрать необходимый уровень значимости. Как видим, здесь наибольшая величина, или нижняя граница уровня статистической значимости, равняется 0,05 - это означает, что допускается пять ошибок в выборке из ста элементов (случаев, испытуемых) или одна ошибка из двад­цати элементов (случаев, испытуемых). Считается, что ни шесть, ни семь, ни большее количество раз из ста мы ошибиться не можем. Цена таких ошибок будет слишком велика.

Заметим, что в современных статистических пакетах на ЭВМ используются не стандартные уровни значимости, а уровни, подсчитываемые непосредственно в процессе работы с соответ­ствующим статистическим методом. Эти уровни, обозначаемые буквой р, могут иметь различное числовое выражение в интервале от 0 до 1, например, р = 0,7, р = 0,23 или р = 0,012. Понятно, что в первых двух случаях полученные уровни значимости слишком велики и говорить о том, что результат значим нельзя. В то же время в последнем случае результаты значимы на уровне 12 тысячных. Это достоверный уровень.

Правило принятия статистического вывода таково: на основании полученных экспериментальных данных психолог подсчи­тывает по выбранному им статистическому методу так называе­мую эмпирическую статистику, или эмпирическое значение. Эту величину удобно обозначить как Ч эмп . Затем эмпирическая стати­стика Ч эмп сравнивается с двумя критическими величинами, ко­торые соответствуют уровням значимости в 5% и в 1% для выб­ранного статистического метода и которые обозначаются как Ч кр . Величины Ч кр находятся для данного статистического метода по соответствующим таблицам, приведенным в приложении к любому учебнику по статистике. Эти величины, как правило, всегда различны и их в дальнейшем для удобства можно назвать как Ч кр1 и Ч кр2 . Найденные по таблицам величины критических значений Ч кр1 и Ч кр2 удобно представлять в следующей стандартной форме записи:

Подчеркнем, однако, что мы использовали обозначения Ч эмп и Ч кр как сокращение слова «число». Во всех статистических методах приняты свои символические обозначения всех этих вели­чин: как подсчитанной по соответствующему статистическому методу эмпирической величины, так и найденных по соответ­ствующим таблицам критических величин. Например, при подсчете рангового коэффициента корреляции Спирмена по таблице критических значений этого коэффициента были найдены сле­дующие величины критических значений, которые для этого метода обозначаются греческой буквой ρ («ро»). Так для р = 0,05 по таб­лице найдена величина ρ кр 1 = 0,61 и для р = 0,01 величина ρ кр 2 = 0,76.

В принятой в дальнейшем изложении стандартной форме записи это выглядит следующим образом:

Теперь нам необходимо сравнить наше эмпирическое значе­ние с двумя найденными по таблицам критическими значения­ми. Лучше всего это сделать, расположив все три числа на так называемой «оси значимости». «Ось значимости» представляет собой прямую, на левом конце которой располагается 0, хотя он, как правило, не отмечается на самой этой прямой, и слева направо идет увеличение числового ряда. По сути дела это при­вычная школьная ось абсцисс ОХ декартовой системы координат. Однако особенность этой оси в том, что на ней выделено три участка, «зоны». Одна крайняя зона называется зоной незначимости, вторая крайняя зона - зоной значимости, а промежуточная - зоной неопреде­ленности. Границами всех трех зон являются Ч кр1 для р = 0,05 и Ч кр2 для р = 0,01, как это показано на рисунке.

В зависимости от правила принятия решения (правила вывода), предписанного в данном статистическом методе возможно два варианта.

Первый вариант: альтернативная гипотеза принимается, если Ч эмп Ч кр .

Или второй вариант: альтернативная гипотеза принимается, если Ч эмп Ч кр .

Подсчитанное Ч эмп по какому либо статистическому методу должно обязательно попасть в одну из трех зон.

Если эмпирическое значение попадает в зону незначимости, то принимается гипотеза Н 0 об отсутствии различий.

Если Ч эмп попало в зону значимости, принимается альтернативная гипотеза Н 1 о на­личии различий, а гипотеза Н 0 отклоняется.

Если Ч эмп попадает в зону неопределенности, перед исследователем стоит дилемма. Так, в зависи­мости от важности решаемой задачи он может считать полученную статистическую оценку достоверной на уровне 5%, и принять, тем самым гипотезу Н 1 , отклонив гипотезу Н 0 , либо - недостоверной на уровне 1%, приняв тем самым, гипотезу Н 0 . Подчеркнем, одна­ко, что это именно тот случай, когда психолог может допустить ошибки первого или второго рода. Как уже говорилось выше, в этих обстоятельствах лучше всего увеличить объем выборки.

Подчеркнем также, что величина Ч эмп может точно совпасть либо с Ч кр1 либо Ч кр2 . В первом случае можно считать, что оценка достоверна точно на уровне в 5% и принять гипотезу Н 1 , или, напротив, принять гипотезу Н 0 . Во втором случае, как пра­вило, принимается альтернативная гипотеза Н 1 о наличии разли­чий, а гипотеза Н 0 отклоняется.

Выборочные параметры распределения, определяемые по серии измерений, являются случайными величинами, следовательно, и их отклонения от генеральных параметров также будут случайными. Оценка этих отклонений носит вероятностный характер - при статистическом анализе можно лишь указать вероятность той или иной погрешности.

Пусть для генерального параметра а получена из опыта несмещенная оценка а * . Назначим достаточно большую вероятность b (такую, что событие с вероятностью b можно считать практически достоверным) и найдем такое значение e b = f (b), для которого

Диапазон практически возможных значений ошибки, возникающей при замене а на а * , будет ±e b . Большие по абсолютной величине ошибки будут появляться только с малой вероятностью

называемой уровнем значимости . Иначе выражение (4.1) можно интерпретировать как вероятность того, что истинное значение параметра а лежит в пределах

. (4.3)

Вероятность b называется доверительной вероятностью и характеризует надежность полученной оценки. Интервал I b = a * ± e b называется доверительным интервалом . Границы интервала a ¢ = a * - e b и a ¢¢ = a * + e b называются доверительными границами . Доверительный интервал при данной доверительной вероятности определяет точность оценки. Величина доверительного интервала зависит от доверительной вероятности, с которой гарантируется нахождение параметра а внутри доверительного интервала: чем больше величина b, тем больше интервал I b (и величина e b). Увеличение числа опытов проявляется в сокращении доверительного интервала при постоянной доверительной вероятности или в повышении доверительной вероятности при сохранении доверительного интервала.

На практике обычно фиксируют значение доверительной вероятности (0,9; 0,95 или 0,99) и затем определяют доверительный интервал результата I b . При построении доверительного интервала решается задача об абсолютном отклонении:

Таким образом, если бы был известен закон распределения оценки а * , задача определения доверительного интервала решалась бы просто. Рассмотрим построение доверительного интервала для математического ожидания нормально распределенной случайной величины Х с известным генеральным стандартом s по выборке объемом n . Наилучшей оценкой для математического ожидания m является среднее выборки со стандартным отклонением среднего

.

Используя функцию Лапласа, получаем

. (4.5)

Задавшись доверительной вероятностью b, определим по таблице функции Лапласа (приложение 1) величину . Тогда доверительный интервал для математического ожидания принимает вид

. (4.7)

Из (4.7) видно, что уменьшение доверительного интервала обратно пропорционально корню квадратному из числа опытов.

Знание генеральной дисперсии позволяет оценивать математическое ожидание даже по одному наблюдению. Если для нормально распределенной случайной величины Х в результате эксперимента получено значение х 1 , то доверительный интервал для математического ожидания при выбранной b имеет вид

где U 1-p /2 - квантиль стандартного нормального распределения (приложение 2).

Закон распределения оценки а * зависит от закона распределения величины Х и, в частности, от самого параметра а . Чтобы обойти это затруднение, в математической статистике применяют два метода:

1) приближенный - при n ³ 50 заменяют в выражении для e b неизвестные параметры их оценками, например:

2) от случайной величины а * переходят к другой случайной величине Q * , закон распределения которой не зависит от оцениваемого параметра а , а зависит только от объема выборки n и от вида закона распределения величины Х . Такого рода величины наиболее подробно изучены для нормального распределения случайных величин. В качестве доверительных границ Q¢ и Q¢¢ обычно используются симметричные квантили

, (4.9)

или с учетом (4.2)

. (4.10)

4.2. Проверка статистических гипотез, критерии значимости,

ошибки первого и второго рода.

Под статистическими гипотезами понимаются некоторые предположения относительно распределений генеральной совокупности той или иной случайной величины. Под проверкой гипотезы понимают сопоставление некоторых статистических показателей, критериев проверки (критериев значимости ), вычисляемых по выборке, с их значениями, определенными в предположении, что данная гипотеза верна. При проверке гипотез обычно подвергается испытанию некоторая гипотеза Н 0 в сравнении с альтернативной гипотезой Н 1 .

Чтобы решить вопрос о принятии или непринятии гипотезы, задаются уровнем значимости р . Наиболее часто используются уровни значимости, равные 0.10, 0.05 и 0.01. По этой вероятности, используя гипотезу о распределении оценки Q * (критерия значимости), находят квантильные доверительные границы, как правило, симметричные Q p /2 и Q 1-p /2 . Числа Q p /2 и Q 1-p /2 называются критическими значениями гипотезы ; значения Q * < Q p /2 и Q * > Q 1-p /2 образуют критическую


область гипотезы (или область непринятия гипотезы) (рис. 12).

Рис. 12. Критическая область Рис. 13. Проверка статистических

гипотезы. гипотез.

Если найденное по выборке Q 0 попадает между Q p /2 и Q 1-p /2 , то гипотеза допускает такое значение в качестве случайного и поэтому нет оснований ее отвергать. Если же значение Q 0 попадает в критическую область, то по данной гипотезе оно является практически невозможным. Но поскольку оно появилось, то отвергается сама гипотеза.

При проверке гипотез можно совершить ошибки двух типов. Ошибка первого рода состоит в том, что отвергается гипотеза, которая на самом деле верна . Вероятность такой ошибки не больше принятого уровня значимости. Ошибка второго рода состоит в том, что гипотеза принимается, а на самом деле она неверна . Вероятность этой ошибки тем меньше, чем выше уровень значимости, так как при этом увеличивается число отвергаемых гипотез. Если вероятность ошибки второго рода равна a, то величину (1 - a) называют мощностью критерия .

На рис. 13 приведены две кривые плотности распределения случайной величины Q, соответствующие двум гипотезам Н 0 и Н 1 . Если из опыта получается значение Q > Q p , то отвергается гипотеза Н 0 и принимается гипотеза Н 1 , и наоборот, если Q < Q p .

Площадь под кривой плотности вероятности, соответствующей справедливости гипотезы Н 0 вправо от значения Q p , равна уровню значимости р , т. е. вероятности ошибки первого рода. Площадь под кривой плотности вероятности, соответствующей справедливости гипотезы Н 1 влево от Q p , равна вероятности ошибки второго рода a, а вправо от Q p - мощности критерия (1 - a). Таким образом, чем больше р , тем больше (1 - a). При проверке гипотезы стремятся из всех возможных критериев выбрать тот, у которого при заданном уровне значимости меньше вероятность ошибки второго рода .

Обычно в качестве оптимального уровня значимости при проверке гипотез используют p = 0,05, так как если проверяемая гипотеза принимается с данным уровнем значимости, то гипотезу, безусловно, следует признать согласующейся с экспериментальными данными; с другой стороны, использование данного уровня значимости не дает оснований для отбрасывания гипотезы.

Например, найдены два значения и некоторого выборочного параметра, которые можно рассматривать как оценки генеральных параметров а 1 и а 2 . Высказывается гипотеза, что различие между и случайное и что генеральные параметры а 1 и а 2 равны между собой, т. е. а 1 = а 2 . Такая гипотеза называется нулевой , или нуль-гипотезой . Для ее проверки нужно выяснить, значимо ли расхождение между и в условиях нулевой гипотезы. Для этого обычно исследуют случайную величину D = – и проверяют, значимо ли ее отличие от нуля. Иногда удобнее рассматривать величину / , сравнивая ее с единицей.

Отвергая нулевую гипотезу, тем самым принимают альтернативную, которая распадается на две: > и < . Если одно из этих равенств заведомо невозможно, то альтернативная гипотеза называется односторонней , и для ее проверки применяют односторонние критерии значимости (в отличие от обычных, двусторонних ). При этом необходимо рассматривать лишь одну из половин критической области (рис. 12).

Например, р = 0,05 при двустороннем критерии соответствуют критические значения Q 0.025 и Q 0.975 , т. е. значимыми (неслучайными) считаются Q * , принявшие значения Q * < Q 0.025 и Q * > Q 0.975 . При одностороннем критерии одно из этих неравенств заведомо невозможно (например, Q * < Q 0.025) и значимыми будут лишь Q * > Q 0.975 . Вероятность последнего неравенства равна 0,025, и, следовательно, уровень значимости будет равен 0,025. Таким образом, если при одностороннем критерии значимости использовать те же критические числа, что и при двустороннем, этим значениям будет соответствовать вдвое меньший уровень значимости.

Обычно для одностороннего критерия берут тот же уровень значимости, что и для двустороннего, так как при этих условиях оба критерия обеспечивают одинаковую ошибку первого рода. Для этого односторонний критерий надо выводить из двустороннего, соответствующего вдвое большему уровню значимости, чем тот, что принят . Чтобы сохранить для одностороннего критерия уровень значимости р = 0,05, для двустороннего необходимо взять р = 0,10, что дает критические значения Q 0.05 и Q 0.95 . Из них для одностороннего критерия останется какое-нибудь одно, например, Q 0.95 . Уровень значимости для одностороннего критерия равен при этом 0.05. Этому же уровню значимости для двустороннего критерия соответствует критическое значение Q 0.975 . Но Q 0.95 < Q 0.975 , значит, при одностороннем критерии большее число гипотез будет отвергнуто и, следовательно, меньше будет ошибка второго рода.

В любой научно-практической ситуации эксперимента (обследования) исследователи могут исследовать не всех людей (генеральную совокупность, популяцию), а только определенную выборку. Например, даже если мы исследуем относительно небольшую группу людей, например страдающих определенной болезнью, то и в этом случае весьма маловероятно, что у нас имеются соответствующие ресурсы или необходимость тестировать каждого больного. Вместо этого обычно тестируют выборку из популяции, поскольку это удобнее и занимает меньше времени. В таком случае, откуда нам известно, что результаты, полученные на выборке, представляют всю группу? Или, если использовать профессиональную терминологию, можем ли мы быть уверены, что наше исследование правильно описывает всю популяцию , выборку из которой мы использовали?

Чтобы ответить на этот вопрос, необходимо определить статистическую значимость результатов тестирования. Статистическая значимость {Significant level , сокращенно Sig.), или /7-уровень значимости (p-level) - это вероятность того, что данный результат правильно представляет популяцию, выборка из которой исследовалась. Отметим, что это только вероятность - невозможно с абсолютной гарантией утверждать, что данное исследование правильно описывает всю популяцию. В лучшем случае по уровню значимости можно лишь заключить, что это весьма вероятно. Таким образом, неизбежно встает следующий вопрос: каким должен быть уровень значимости, чтобы можно было считать данный результат правильной характеристикой популяции?

Например, при каком значении вероятности вы готовы сказать, что таких шансов достаточно, чтобы рискнуть? Если шансы будут 10 из 100 или 50 из 100? А что если эта вероятность выше? Что можно сказать о таких шансах, как 90 из 100, 95 из 100 или 98 из 100? Для ситуации, связанной с риском, этот выбор довольно проблематичен, ибо зависит от личностных особенностей человека.

В психологии же традиционно считается, что 95 или более шансов из 100 означают, что вероятность правильности результатов достаточна высока для того, чтобы их можно было распространить на всю популяцию. Эта цифра установлена в процессе научно-практической деятельности - нет никакого закона, согласно которому следует выбрать в качестве ориентира именно ее (и действительно, в других науках иногда выбирают другие значения уровня значимости).

В психологии оперируют этой вероятностью несколько необычным образом. Вместо вероятности того, что выборка представляет популяцию, указывается вероятность того, что выборка не представляет популяцию. Иначе говоря, это вероятность того, что обнаруженная связь или различия носят случайный характер и не являются свойством совокупности. Таким образом, вместо того чтобы утверждать, что результаты исследования правильны с вероятностью 95 из 100, психологи говорят, что имеется 5 шансов из 100, что результаты неправильны (точно так же 40 шансов из 100 в пользу правильности результатов означают 60 шансов из 100 в пользу их неправильности). Значение вероятности иногда выражают в процентах, но чаще его записывают в виде десятичной дроби. Например, 10 шансов из 100 представляют в виде десятичной дроби 0,1; 5 из 100 записывается как 0,05; 1 из 100 - 0,01. При такой форме записи граничным значением является 0,05. Чтобы результат считался правильным, его уровень значимости должен быть ниже этого числа (вы помните, что это вероятность того, что результат неправильно описывает популяцию). Чтобы покончить с терминологией, добавим, что «вероятность неправильности результата» (которую правильнее называть уровнем значимости) обычно обозначается латинской буквой р. В описание результатов эксперимента обычно включают резюмирующий вывод, такой как «результаты оказались значимыми на уровне достоверности (р) менее 0,05 (т.е. меньше 5%).

Таким образом, уровень значимости (р ) указывает на вероятность того, что результаты не представляют популяцию. По традиции в психологии считается, что результаты достоверно отражают общую картину, если значение р меньше 0,05 (т.е. 5%). Тем не менее это лишь вероятностное утверждение, а вовсе не безусловная гарантия. В некоторых случаях этот вывод может оказаться неправильным. На самом деле, мы можем подсчитать, как часто это может случиться, если посмотрим на величину уровня значимости. При уровне значимости 0,05 в 5 из 100 случаев результаты, вероятно, неверны. 11а первый взгляд кажется, что это не слишком часто, однако если задуматься, то 5 шансов из 100 - это то же самое, что 1 из 20. Иначе говоря, в одном из каждых 20 случаев результат окажется неверным. Такие шансы кажутся не особенно благоприятными, и исследователи должны остерегаться совершения ошибки первого рода. Так называют ошибку, которая возникает, когда исследователи считают, что обнаружили реальные результаты, а на самом деле их нет. Противоположные ошибки, состоящие в том, что исследователи считают, будто они не обнаружили результата, а на самом деле он есть, называют ошибками второго рода.

Эти ошибки возникают потому, что нельзя исключить возможность неправильности проведенного статистического анализа. Вероятность ошибки зависит от уровня статистической значимости результатов. Мы уже отмечали, что, для того чтобы результат считался правильным, уровень значимости должен быть ниже 0,05. Разумеется, некоторые результаты имеют более низкий уровень, и нередко можно встретить результаты с такими низкими /?, как 0,001 (значение 0,001 говорит о том, что результаты могут быть неправильными с вероятностью 1 из 1000). Чем меньше значение р, тем тверже наша уверенность в правильности результатов .

В табл. 7.2 приведена традиционная интерпретация уровней значимости о возможности статистического вывода и обосновании решения о наличии связи (различий).

Таблица 7.2

Традиционная интерпретация уровней значимости, используемых в психологии

На основе опыта практических исследований рекомендуется: чтобы по возможности избежать ошибок первого и второго рода, при ответственных выводах следует принимать решения о наличии различий (связи), ориентируясь на уровень р п признака.

Статистический критерий (Statistical Test) - это инструмент определения уровня статистической значимости. Это решающее правило, обеспечивающее принятие истинной и отклонение ложной гипотезы с высокой вероятностью .

Статистические критерии обозначают также метод расчета определенного числа и само это число. Все критерии используются с одной главной целью: определить уровень значимости анализируемых с их помощью данных (т.е. вероятность того, что эти данные отражают истинный эффект, правильно представляющий популяцию, из которой сформирована выборка).

Некоторые критерии можно использовать только для нормально распределенных данных (и если признак измерен по интервальной шкале) - эти критерии обычно называют параметрическими. С помощью других критериев можно анализировать данные практически с любым законом распределения - их называют непараметрическими.

Параметрические критерии - критерии, включающие в формулу расчета параметры распределения, т.е. средние и дисперсии (^-критерий Стью- дента, F-критерий Фишера и др.).

Непараметрические критерии - критерии, не включающие в формулу расчета параметров распределения и основанные на оперировании частотами или рангами (критерий Q Розенбаума, критерий U Манна - Уитни

Например, когда мы говорим, что достоверность различий определялась по ^-критерию Стьюдента, то имеется в виду, что использовался метод ^-критерия Стьюдента для расчета эмпирического значения, которое затем сравнивается с табличным (критическим) значением.

По соотношению эмпирического (нами вычисленного) и критического значений критерия (табличного) мы можем судить о том, подтверждается или опровергается наша гипотеза. В большинстве случаев для того, чтобы мы признали различия значимыми, необходимо, чтобы эмпирическое значение критерия превышало критическое, хотя есть критерии (например, критерий Манна - Уитни или критерий знаков), в которых мы должны придерживаться противоположного правила.

В некоторых случаях расчетная формула критерия включает в себя количество наблюдений в исследуемой выборке, обозначаемое как п. По специальной таблице мы определяем, какому уровню статистической значимости различий соответствует данная эмпирическая величина. В большинстве случаев одно и то же эмпирическое значение критерия может оказаться значимым или незначимым в зависимости от количества наблюдений в исследуемой выборке (п ) или от так называемого количества степеней свободы , которое обозначается как v (г>) или как df (иногда d).

Зная п или число степеней свободы, мы по специальным таблицам (основные из них приводятся в приложении 5) можем определить критические значения критерия и сопоставить с ними полученное эмпирическое значение. Обычно это записывается так: «при п = 22 критические значения критерия составляют t St = 2,07» или «при v (d ) = 2 критические значения критерия Стьюдента составляют = 4,30» и т.н.

Обычно предпочтение оказывается все же параметрическим критериям, и мы придерживаемся этой позиции. Считается, что они более надежны, и с их помощью можно получить больше информации и провести более глубокий анализ. Что касается сложности математических вычислений, то при использовании компьютерных программ эта сложность исчезает (но появляются некоторые другие, впрочем, вполне преодолимые).

  • В настоящем учебнике мы подробно не рассматриваем проблему статистических
  • гипотез (нулевой - Я0 и альтернативной - Нj) и принимаемые статистические решения,поскольку студенты-психологи изучают это отдельно по дисциплине «Математическиеметоды в психологии». Кроме того, необходимо отметить, что при оформлении исследовательского отчета (курсовой или дипломной работы, публикации) статистические гипотезыи статистические решения, как правило, не приводятся. Обычно при описании результатовуказывают критерий, приводят необходимые описательные статистики (средние, сигмы,коэффициенты корреляции и т.д.), эмпирические значения критериев, степени свободыи обязательно р-уровень значимости. Затем формулируют содержательный вывод в отношении проверяемой гипотезы с указанием (обычно в виде неравенства) достигнутого илинедостигнутого уровня значимости.

Дадим определение терминам уровень надежности и уровень значимости. Покажем, как и где они используется в MS EXCEL .

Уровень значимости (Level of significance) используется в и при .

СОВЕТ : Для понимания терминов Уровень значимости и Уровень надежности потребуется знание следующих понятий:

Уровень значимости статистического теста – это вероятность отклонить нулевую гипотезу , когда на самом деле она верна. Другими словами, это допустимая для данной задачи вероятность ошибки первого рода (type I error).

Уровень значимости обычно обозначают греческой буквой α (альфа ). Чаще всего для уровня значимости используют значения 0,001; 0,01; 0,05; 0,10.

Например, при построении доверительного интервала для оценки среднего значения распределения , его ширину рассчитывают таким образом, чтобы вероятность события «выборочное среднее (Х ср) находится за пределами доверительного интервала » было равно уровню значимости . Реализация этого события считается маловероятным (практически невозможным) и служит основанием для отклонения нулевой гипотезы о равенстве среднего заданному значению .

Ошибка первого рода часто называется риском производителя. Это осознанный риск, на который идет производитель продукции, т.к. он определяет вероятность того, что годная продукция может быть забракована, хотя на самом деле она таковой не является. Величина ошибки первого рода задается перед проверкой гипотезы , таким образом, она контролируется исследователем напрямую и может быть задана в соответствии с условиями решаемой задачи.

Уровень значимости обычно указывается в аргументах для вычисления соответствующего распределения: НОРМ.СТ.ОБР() , ХИ2.ОБР() , СТЬЮДЕНТ.ОБР() и др. Примеры использования этих функций приведены в статьях про проверку гипотез и про построение доверительных интервалов .

Уровень надежности

Уровень доверия (этот термин более распространен в отечественной литературе, чем Уровень надежности ) - означает вероятность того, что доверительный интервал содержит истинное значение оцениваемого параметра распределения.

Уровень доверия равен 1-α, где α – уровень значимости .

Термин Уровень надежности имеет синонимы: уровень доверия, коэффициент доверия, доверительный уровень и доверительная вероятность (англ. Confidence Level , Confidence Coefficient ).

В математической статистике обычно используют значения уровня доверия 90%; 95%; 99%, реже 99,9% и т.д.

Например, Уровень доверия 95% означает, что событие, вероятность которого 1-0,95=5% исследователь считать маловероятным или невозможным. Разумеется, выбор уровня доверия полностью зависит от исследователя. Так, степень доверия авиапассажира к надежности самолета, несомненно, должна быть выше степени доверия покупателя к надежности электрической лампочки.

Примечание : Стоит отметить, что математически не корректно говорить, что Уровень доверия является вероятностью, того что оцениваемый параметр распределения принадлежит доверительному интервалу , вычисленному на основе выборки . Поскольку, считается, что в математической статистике отсутствуют априорные сведения о параметре распределения. Математически правильно говорить, что доверительный интервал , с вероятностью равной Уровню доверия, накроет истинное значение оцениваемого параметра распределения.

Уровень надежности в MS EXCEL

В MS EXCEL Уровень надежности упоминается в . После вызова надстройки, в диалоговом окне необходимо выбрать инструмент Описательная статистика .

После нажатия кнопки ОК будет выведено другое диалоговое окно.

Необходимо учитывать, что данный доверительный интервал рассчитывается при условии, что выборка берется из

Уровни статистической значимости

Уровень значимости – это вероятность того, что мы сочли различия существенными, в то время как они на самом деле случайны.

Итак, уровень значимости имеет дело с вероятностью .

Уровень значимости показывает степень достоверности выявленных различий между выборками, т.е. показывает, насколько мы можем доверять тому, что различия действительно есть.

Современные научные исследования требуют обязательных расчётов уровня статистической значимости результатов.

Обычно в прикладной статистике используют 3 уровня значимости.

Уровни значимости

1. 1-й уровень значимости: р 0,05.

Это 5%-ный уровень значимости. До 5% составляет вероятность того, что мы ошибочно сделали вывод о том, что различия достоверны, в то время как они недостоверны на самом деле. Можно сказать и по-другому: мы лишь на 95% уверены в том, что различия действительно достоверны. В данном случае можно написать и так: P> 0,95. Общий смысл критерия останется тем же.

2. 2-й уровень значимости: р 0,01.

Это 1%-ный уровень значимости. Вероятность ошибочного вывода о том, что различия достоверны, составляет не более 1%. Можно сказать и по-другому: мы на 99% уверены в том, что различия действительно достоверны. В данном случае можно написать и так: P> 0,99. Смысл останется тем же.

3. 3-й уровень значимости: р 0,001.

Это 0,1%-ный уровень значимости. Всего 0,1% составляет вероятность того, что мы сделали ошибочный вывод о том, что различия достоверны. Это - самый надёжный вариант вывода о достоверности различий. Можно сказать и по-другому: мы на 99,9% уверены в том, что различия действительно достоверны. В данном случае можно написать и так: P> 0,999. Смысл опять-таки останется тем же.

Уровень значимости – это вероятность ошибочного отклонения (отвержения) гипотезы, в то время как она на самом деле верна. Речь идёт об отклонении нулевой гипотезы Н о .

Уровень значимости – это допустимая ошибка в нашем утверждении, в нашем выводе.

Ошибки

Возможны ошибки двух родов: первого рода (α) и второго рода (β ).

Ошибка I рода – мы отклонили нулевую гипотезу, в то время как она верна.

α – ошибка I рода.

р 0,05, уровень ошибки α ≤ 0,05

Вероятность того, что принято правильное решение: 1 – α = 0,95, или 95%.

Уровни значимости для ошибок I рода

1. α 0,05 – низший уровень

Низший уровень значимости – позволяет отклонять нулевую гипотезу, но еще не разрешает принять альтернативную.

2. α 0,01 – достаточный уровень

Достаточный уровень – позволяет отклонять нулевую гипотезу и принимать альтернативную.

Исключение:

G – критерий знаков

T – критерий Вилкоксона

U – критерий Манна – Уитни.

Для них обратное соотношение.

3. α 0,001 – высший уровень значимости .

На практике различия считают достоверными при р 0,05.

Для ненаправленной статистической гипотезы используется двусторонний критерий значимости. Он более строгий, так как проверяет различия в обе стороны: в сторону нулевой гипотезы и в сторону альтернативной. Поэтому для него используется критерий значимости 0,01.

Мощность критерия – его способность выявлять даже мелкие различия если они есть. Чем мощнее критерий, тем лучше он отвергает нулевую гипотезу и подтверждает альтернативную.

Здесь появляется понятие: ошибка II рода.

Ошибка II рода – это принятие нулевой гипотезы, хотя она не верна.

Мощность критерия: 1 – β

Чем мощнее критерий, тем он привлекательнее для исследователя. Он лучше отвергает нулевую гипотезу.

Чем привлекательны маломощные критерии?

Достоинства маломощных критериев

    Простота

    Широкий диапазон, по отношению к самым разным данным

    Применимость к неравным по объему выборкам.

    Большая информативность результатов.

Самый популярный статистический критерий в России - Т-критерий Стьюдента. Но всего в 30% статей его используют правильно, а в 70% - неправильно, т.к. не проверяют предварительно выборку на нормальность распределения.

Второй по популярности - критерий хи-квадрат, χ 2

За рубежом:

Т-критерий Вилкоксона

U- критерий

χ 2 - хи-квадрат.

Т-критерий Стьюдента – это частный случай дисперсионного анализа для более маленькой по объёму выборки.